R/stl.R
generate.stl_decomposition.Rd
Produces new data with the same structure by resampling the residuals using a block bootstrap procedure. This method can only generate within sample, and any generated data out of the trained sample will produce NA simulations.
# S3 method for class 'stl_decomposition'
generate(x, new_data, specials = NULL, ...)
A fitted model.
A tsibble containing the time points and exogenous regressors to produce forecasts for.
(passed by fabletools::forecast.mdl_df()
).
Other arguments passed to methods
Bergmeir, C., R. J. Hyndman, and J. M. Benitez (2016). Bagging Exponential Smoothing Methods using STL Decomposition and Box-Cox Transformation. International Journal of Forecasting 32, 303-312.
as_tsibble(USAccDeaths) %>%
model(STL(log(value))) %>%
generate(as_tsibble(USAccDeaths), times = 3)
#> # A tsibble: 216 x 5 [1M]
#> # Key: .model, .rep [3]
#> .model .rep index value .sim
#> <chr> <chr> <mth> <dbl> <dbl>
#> 1 STL(log(value)) 1 1973 Jan 9007 9250.
#> 2 STL(log(value)) 1 1973 Feb 8106 8585.
#> 3 STL(log(value)) 1 1973 Mar 8928 9401.
#> 4 STL(log(value)) 1 1973 Apr 9137 9426.
#> 5 STL(log(value)) 1 1973 May 10017 9950.
#> 6 STL(log(value)) 1 1973 Jun 10826 10023.
#> 7 STL(log(value)) 1 1973 Jul 11317 10720.
#> 8 STL(log(value)) 1 1973 Aug 10744 10441.
#> 9 STL(log(value)) 1 1973 Sep 9713 9466.
#> 10 STL(log(value)) 1 1973 Oct 9938 9148.
#> # ℹ 206 more rows